Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model

نویسندگان

  • Joakim Beck
  • Serge Guillas
چکیده

Computer simulators can be computationally intensive to run over a large number of input values, as required for optimization and various uncertainty quantification tasks. The standard paradigm for the design and analysis of computer experiments is to employ Gaussian random fields to model computer simulators. Gaussian process models are trained on input-output data obtained from simulation runs at various input values. Following this approach, we propose a sequential design algorithm, MICE (Mutual Information for Computer Experiments), that adaptively selects the input values at which to run the computer simulator, in order to maximize the expected information gain (mutual information) over the input space. The superior computational efficiency of the MICE algorithm compared to other algorithms is demonstrated by test functions, and a tsunami simulator with overall gains of up to 20% in that case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sequential Monte Carlo Framework for Adaptive Bayesian Model Discrimination Designs using Mutual Information

In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on eith...

متن کامل

A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information

Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

A Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks

The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...

متن کامل

Dimension Reduction for Gaussian Process Emulation: An Application to the Influence of Bathymetry on Tsunami Heights | SIAM/ASA Journal on Uncertainty Quantification | Vol. 5, No. 1 | Society for Industrial and Applied Mathematics

High accuracy complex computer models, also called simulators, require large resources in time and memory to produce realistic results. Statistical emulators are computationally cheap approximations of such simulators. They can be built to replace simulators for various purposes, such as the propagation of uncertainties from inputs to outputs or the calibration of some internal parameters again...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014